地 球 化 学 46, 181–185 (2012) Chikyukagaku (Geochemistry) 46, 181–185 (2012)

報 文

メタンを主成分とするガス中の 微量非メタン炭化水素の測定法の改良

猪 狩 俊一郎*

(2012年4月6日受付, 2012年7月13日受理)

Improvement of measuring system of trace nonmethane hydrocarbons in methane-rich gases

Shunichiro IGARI*

* Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology Chuodai 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan

The measuring method of nonmethane hydrocarbons in methane rich gas was improved. Nonmethane hydrocarbons were condensed in a vacant stainless column at liquid nitrogen temperature in the former system (Igari, 1995). However, in the system, recovery rate of nonmethane hydrocarbons dropped as low as 80%, in the case of large volume sample injection, more than 5 ml. To improve the recovery rate, the concentration column was packed with quartz sand and a vacant precolumn was equipped to avoid sample injection shock. By these improvements, recovery rate of nonmethane hydrocarbons became about 100% even in the case of 10 ml sample injection.

Key words: Nonmethane hydrocarbon, Natural gas, Measuring method, Improvement

1. はじめに

天然ガスは一般にメタンを主成分としており,その 他の有機成分としては,非メタン炭化水素を含む。非 メタン炭化水素濃度はガスの起源等に依存する。

天然ガスは,熱分解起源ガスと微生物起源ガスの二 種類に分けられる。熱分解ガスはケロジェンや石油・ 石炭の分解によって生成する。熱分解起源ガスの主成 分はメタンであり,数%の飽和非メタン炭化水素を含 むことが多いが (Schoell, 1983),一部の熱分解起源 ガスでは非メタン炭化水素をほとんど含まない例もあ る (Igari and Sakata, 1989)。一方,微生物起源ガス は二酸化炭素や有機物の微生物による還元によって生 成し,主成分はメタンであり,非メタン炭化水をほと んど含まない(Rice and Claypool, 1981)。メタン/ 非メタン炭化水素比はメタンの安定炭素同位体比との 組み合わせで,ガス起源推定のための重要な指標と なっている。メタン/非メタン炭化水素比を利用とし てガスの起源等を議論した近年の研究例としては, Burruss and Laughrey (2010); Zhang *et al.* (2011); Kim *et al.* (2012); Dai *et al.* (2012)等がある。また 日本においても同様の最近の研究例として,早稲田・ 岩野 (2007); 早稲田 (2009); 加藤ほか (2009, 2011); 早稲田ほか (2011)等がある。

また、メタン/非メタン炭化水素比以外の研究例と しては、例えばネオペンタン/イソペンタン比のよう な非メタン炭化水素間の比は、生成温度に依存し、相 対的な生成温度の指標となるという報告がある(Igari *et al.*, 2007)。この場合、生成温度が高いほど、ネオ ペンタン/イソペンタン比は高くなる。また、微生物 による分解を受けるとイソブタン/*n*-ブタン比が高

^{*} 産業技術総合研究所地圏資源環境研究部門 〒305-8567 つくば市東1-1-1中央第七

くなることが一般に知られている。

このように、非メタン炭化水素濃度はガスの起源や 生成温度等の重要な指標である。非メタン炭化水素濃 度の測定には通常, FID 検出器を装備したガスクロ マトグラフが使われる。それぞれの非メタン炭化水素 濃度が5 ppm 程度以上ある場合は、キャピラリーカ ラムを用いることによって,分析可能である。一方, 非メタン炭化水素濃度が5 ppm 程度よりも低い場合 は充填カラムを用いるが、非メタン炭化水素のピーク がメタンの大きなピークに飲み込まれ、測定不可能な 場合がある。そこで猪狩(1995)は非メタン炭化水 素のみを、冷却したカラムに濃縮し、メタンのみを除 去してから測定する方法を開発した。しかし、この方 法では注入する試料量が2ml以上の場合、非メタン 炭化水素が完全には吸着しない場合があることが明ら かになってきた。今回, 非メタン炭化水素の回収率の 向上を目指し、装置の改良を行ったので報告する。

2. 装置および測定法

装置の概要を Fig. 1に示す。本装置は、ガスクロマ トグラフの試料注入口と GC カラムの間に U字型ス テンレス製非メタン炭化水素濃縮用カラム(口径:2 mm,長さ20 cm)をとりつけたものである。猪狩 (1995)は非メタン炭化水素濃縮カラムとして中空 のカラムを用いたが、今回は、石英砂(島津製作所製 シマライト60/80 mesh)1gを充填したカラムも用 い、非メタン炭化水素の回収率の比較を行った。ま た、試料注入口と非メタン炭化水素濃縮カラムの間に 中空のプレカラム (内径3 mm, 長さ6 m) を装着す ることによって, 試料多量注入時の圧力増加による非 メタン炭化水素の回収率低下の回避を試みた。ガスク ロマトグラフは島津製作所製 GC 14 A を用いた。GC の分析条件は, GC カラム:GL サイエンス社製 Unipack S (長さ2 m), 検出器:FID, キャリアーガス: へリウム, 流速:約30 ml/min., 試料注入口温度: 200°C, 検出器温度:200°C, とした。またカラム恒 温槽温度は, 40°C で10 min.保持後, 昇温速度4°C/ min.で120°C まで加熱し, その後150°C で30 min.空 焼きを行った。

操作方法としては、非メタン炭化水素濃縮カラムの 下部10 cm 程度の部分を液体窒素で冷却しておき, GC 注入口から試料(メタン・エタン・プロパン・イ ソブタン・n-ブタン・ネオペンタン・イソペンタ ン・*n*-ペンタン各2.0 ppm, 窒素ベースの混合ガス) を導入する。非メタン炭化水素は濃縮カラム内に凝縮 し、メタンは濃縮カラムを徐々に通過する。通過する メタンをインテグレーターによって観察し、メタンが ほぼ通過した段階で、濃縮カラムを冷却していた液体 窒素を室温の水に切り替えて、濃縮カラムを室温まで 上昇させ,非メタン炭化水素を脱着させる。脱着させ た非メタン炭化水素をガスクロマトグラフに導入し、 測定を行う。なお、本研究の主な目的は種々の条件下 における回収率の相違を明らかにすることではなく, 100%の回収率を得ることであるため、測定の繰り返 し回数には条件によって差がある。

Fig. 1 Improved measuring system of trace nonmethane hydrocarbons in methane-rich gas.

3.結果

各条件下における,各炭化水素の回収率をTable 1 に示す(メタン・エタン・プロパン・イソブタン・n-ブタン・ネオペンタン・イソペンタン・n-ペンタン 各々2.0 ppmの混合ガス1 mlを冷却濃縮操作を行わ ずに,直接ガスクロマトグラフで測定した場合の面積 値を標準とした)。

4.考察

4.1 試料注入量と回収率の関係,濃縮カラムへの 石英砂充填の効果

中空の濃縮カラムを使用した場合(プレカラム有) の試料注入量と回収率の関係を Fig. 2a に示す。なお 複数回,同一条件下で測定を行った場合には,平均値 をプロットしてある。注入量が多いほど,回収率が低 くなる傾向が観察される。特にプロパンの回収率は注 入量5 ml の場合,78%にまで低下する。石英砂1 ml を充填した濃縮カラムを使用した場合の(プレカラム 有)試料注入量と回収率の関係を Fig. 2b に示す。試 料注入量は5 ml でも10 ml でも,ほぼ100%の回収率 が得られた。このことによって,石英砂の充填が回収 率向上に大きな効果があることが明らかになった。

4.2 プレカラムの有無と回収率の関係

濃縮装置では,できるだけ配管の継ぎ目を少なくし て,キャリアーガスの漏れを防ぐことが重要である。 そこで、より装置を簡単にした場合に回収率がどうな るか調べるために、濃縮カラムに石英砂を充填した場 合についてプレカラムの有無と回収率の関係について 検討を行った。プレカラムが無くても回収率が維持さ れるようであれば、装置の単純化が可能となる。試料 注入量5 mlの場合(Fig. 3a)と10 mlの場合(Fig. 3b)について、それぞれプレカラムがある場合と無 い場合の回収率を示す。いずれ場合もプレカラムが無 い場合、回収率は低下する。特に試料注入量10 mlの 場合には n-ブタンの回収率が90%にまで低下する。 これは試料注入が多いため、配管内の圧力増加によっ て非メタン炭化水素が濃縮せずに押しだされるためと 考えられる。このように試料注入時の圧力増加を緩和 するために、プレカラムは必要であることが明らかに なった。

4.3 測定用ガスクロマトグラフのカラム恒温槽温 度と回収率の関係

本装置では、注入した試料はガスクロマトグラフの 恒温槽内を通過してから濃縮カラムに導入される。 従って、ガスクロマトグラフ恒温槽が高温の場合には 試料は高温状態で濃縮カラムを通過し、回収率が低下 する可能性がある。実験 No. 16は石英砂を充填した カラムを用い、プレカラムを装着した場合であるが、 これは濃縮操作をガスクロ恒温槽温度150°Cの条件下 で行っている。この場合の回収率はほぼ100%であ る。よって本装置では、ガスクロマトグラフが高温状

No.	concentration column	precolumn	sample volume	ethane	propane	isobutane	n-butane	neopentane	isopentane	n-pentane
			(ml)							-
1	vacant	equipped	1	0.998	0.996	0.991	0.977	1.007	1.015	1.022
2	vacant	equipped	1	1.009	0.862	0.924	0.926	0.963	0.988	0.991
average of 1 and 2	vacant	equipped	1	1.003	0.929	0.958	0.952	0.985	1.002	1.006
3	vacant	equipped	2	1.006	0.811	0.902	0.934	0.951	0.988	1.002
4	vacant	equipped	2	0.997	0.909	0.960	0.966	0.993	1.007	1.024
average of 3 and 4	vacant	equipped	2	1.002	0.860	0.931	0.950	0.972	0.998	1.013
5	tracent	aminned	5	1 000	0 749	0.866	0.013	0.933	0.976	0.995
5	vacant	equipped	5	0.005	0.749	0.800	0.915	0.935	0.970	0.995
0	vacant	equipped	5	1.002	0.089	0.822	0.807	0.901	0.931	1.005
/	vacant	equipped	5	1.005	0.820	0.914	0.940	0.958	0.988	1.005
8	vacant	equipped	5	0.995	0.872	0.944	0.907	0.972	0.997	1.010
average of 5 to 8	vacant	equipped	5	0.998	0.783	0.887	0.923	0.941	0.978	0.999
9	packed with quartz sand	not equipped	5	0.998	0.987	0.996	0.964	0.999	1.005	0.994
10	packed with quartz sand	not equipped	10	0.971	0.926	0.988	0.877	0.995	0.999	0.989
11	packed with quartz sand	not equipped	10	0.998	0.973	1.002	0.947	1.008	1.010	1.008
12	packed with quartz sand	not equipped	10	0.969	0.942	0.991	0.884	1.000	1.005	0.972
13	packed with quartz sand	not equipped	10	0.982	0.945	0.988	0.902	0.994	1.000	0.974
14	packed with quartz sand	not equipped	10	0.990	0.973	0.992	0.952	0.998	1.002	1.002
average of 10 to 14	packed with quartz sand	not equipped	10	0.982	0.952	0.992	0.912	0.999	1.003	0.989
15	packed with quartz sand	equipped	5	1.005	1.016	1.007	1.013	1.014	1.018	1.025
16	packed with quartz sand	equipped	10	1.008	0.998	1.006	0.989	1.010	1.016	1.018

Table 1 Recovery of each hydrocarbon.

Fig. 2 Relation between sample volume and recovery of each hydrocarbon. (Precolumn was equipped.) a): vacant concentration column was used. b): concentration column packed with quartz sand was used. Open circle: sample volume was 1 ml, open square: 2 ml, open triangle: 5 ml, open diamond: 10 ml.

Fig. 3 Effect of precolumn on recovery of each hydrocarbon. (Concentration column is packed with quartz sand.) a) sample volume was 5 ml, b) sample volume was 10 ml. Open symbol: precolumn was equipped, solid symbol: precolumn was not equipped.

態でも高い回収率を得ることが可能であることが明ら かになった。なお、その他の実験の濃縮時のガスクロ 恒温槽温度は、No. 14の場合40°C, No. 9, 10, 2, 13の 場合150°Cであり、Nos. 1-8, 11, 15については実験開 始当初、ガスクロ恒温槽温度について考慮していな かったため無記録である。

5.まとめ

改良した本装置によって,試料注入量10 ml でも, ほぼ100%の回収率で非メタン炭化水素の濃縮・測定 が可能になった。しかし,本実験で行ったものと違う 条件下で測定を行う場合は,回収率のチェックが必要 であり,回収率が低い場合には,充填する石英砂の量 を増やす等の調整が必要である。

謝 辞

国際石油開発帝石株式会社の平井明夫先生と匿名の 査読者の方,編集委員の松本潔先生には本論文作成に あたり,貴重なコメントをいただきました。深く感謝 いたします。

2009年8月5日有機地球化学シンポジウムで一部発表。

引用文献

- Burruss, R. C. and Laughrey, C. D. (2010) Carbon and hydrogen isotopic reversals in deep sea basin gas: Evidence for limits to the stability of hydrocarbons. *Organic Geochemistry*, 41, 1285–1296.
- Dai, J. X., Ni, Y. Y. and Zou, C. N. (2012) Stable carbon and hydrogen isotopes of natural gases sourced from the Xuji-

184

ahe Formation in the Sichuan Basin, China. Organic Geochemistry, **43**, 103-111.

- 猪狩俊一郎(1995)メタンを主成分とするガス中の微量軽質炭 化水素の測定法.地球化学,29,17-23.
- Igari, S. and Sakata, S. (1989) Origin of natural gas of dissolved-in-water type in Japan inferred from chemical and isotopic compositions: Occurrence of dissolved gas of thermogenic origin. *Geochemical Journal*, 23, 139–142.
- Igari, S., Maekawa, T. and Suzuki Y. (2007) Pentane and hexane isomers in natural gases from oil nad gas fields in Akita, Niigata and Hokkaido, Japan: Determination factor in their isomer ratios. *Geochemical Journal*, **41**, 57– 63.
- 加藤進・早稲田周・西田英毅・岩野裕継(2009)静岡県相良地 域におけるガスの地球化学.石油技術協会誌,74,462-471.
- 加藤進・早稲田周・岩野裕継(2011)宮崎県の水溶性ガス田に おける地球化学.石油技術協会誌, 76, 244-253.
- Kim, J., Torres, M. E., Choi, J., Bahk, J., Park, M. and Hong,W. (2012) Inferences on gas transport based on molecular

and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin. *Organic geochemistry*, **43**, 26–38.

- Rice D. D. and Claypool, G. E. (1981) Generation, accumulation and resource potential of biogenic gas. *American As*sociation of Petroleum Geologists Bulletin, **65**, 5–25.
- Schoell, M. (1983) Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin, 67, 2225–2238.
- 早稲田周(2009)マッドガス同位体検層.石油技術協会誌, 74, 107-110.
- 早稲田周・岩野裕継(2007)ガス同位体組成による貯留層評 価.石油技術協会誌, **72**, 585-593.
- 早稲田周・岩野裕継・浅利康介(2011)ガス同位体組成からみ た北蒲原地域における炭化水素の移動・集積.石油技術協 会誌,76,43-51.
- Zhang, S. C., Huang, H. P., Feng, Z. H. and Shuai, Y. M. (2011) Geochemical characterization of secondary microbial gas occurrence in the Songliao Basin, NE China. Organic Geochemistry, 42, 781–790.