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A scenario on the accretion of meteorite parent bodies

Naoji SUGIURA ™

* Department of Earth and Planetary Science, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Accretion ages of meteorite parent bodies were estimated assuming homogeneous distribu-
tion of **Al in the solar nebula. In case of iron meteorites, the accretion ages are constrained by
the core formation ages (W isotopic composition of metal samples). In case of achondrites, Al-Mg
and Mn-Cr ages obtained from (bulk) isochrons and/or Mg isotopic compositions of Al-poor mete-
orites could be used for constraining accretion ages. In case of chondrite parent bodies, the ac-
cretion ages are mainly constrained by the peak metamorphic temperatures. Formation ages of
secondary minerals such as carbonates also constrain accretion ages of C chondrite parent bod-
ies. Using literature data of bulk ¢*Cr anomalies in meteorites and the estimated accretion
ages, a diagram that suggests increase in ¢”*Cr with time of accretion is constructed. This is in-
terpreted as a result of injection of **Cr-rich grains into the solar nebula and the subsequent dif-
fusive advection. Numerical simulations confirmed that the ¢*Cr evolution obtained from mete-
oritic data can be well explained by an appropriate set of adjustable parameters (e.g. viscosity

parameter = 10~° and injection radius~100 AU).

Key words: Meteorite parent body, Accretion, Thermal history, **Cr, *Al, Radiogenic ages
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Fig.1 &"Cr of bulk meteorites are plotted against the accretion ages of the parent bodies. Except

for the NWA 011 achondrite grouplet and Tafassasset, a positive correlation between ¢"Cr
and accretion ages is observed, suggesting increase in ¢”“Cr with time in the solar nebula.
Leftward arrows indicate that the errors on the older side cannot be specified.
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Table 1

£”Cr in bulk meteorites.

meteorite

£54Cr +/-2cerror

reference

magmatic iron

pallasite

mesosiderite

ureilite

HED
angrite
aubrite
NWA 011

acapulcoite-lodranite

Tafassasset

E chondrite

O chondrite

R chondrite

CK chondrite

CO chondrite

CV chondrite

CB-CH chondrite

CM chondrite

Tagish Lake

CR chondrite

CI chondrite

-0.85+/-0.06
-0.72+/-0.10
-0.93+/-0.11
-0.72+/-0.03
-0.59+/-0.14
-1.08+/-0.25
-0.77+/-0.10
-0.92+/-0.02
-0.92+/-0.20
-0.73+/-0.03
-0.38+/-0.09
-0.36+/-0.17
-0.53+/-0.25
-0.16+/-0.19
1.37+/-0.03
-0.75
-0.34+/-0.25
1.37+/-0.27
0.00+/-0.04
0.06+/-0.11
-0.42+/-0.03
-0.34+/-0.14
0.43+/-0.09
-0.11+/-0.25
0.63+/-0.09
0.33+/-0.12
0.6+/-0.06
0.87+/-0.18
1.02+/-0.24
0.86+/-0.09
0.87+/-0.06
0.95+/-0.10
0.85+/-0.17
1.17+/-0.14
0.87+/-0.19
1.29+/-0.02
1.01+/-0.06
0.97+/-0.20
1.13+/-0.21
1.34+/-0.19
1.19+/-0.15
1.30+/-0.21
1.32+/-0.11
1.56+/-0.12
1.65+/-0.07
1.54+/-0.15
1.56+/-0.06
1.69+/-0.25

Trinquier et al.,2007

Trinquier et al.,2007

Qinetal., 2010a

Trinquier et al., 2007

Yamashita et al., 2005

Larsen et al., 2011

Qin et al., 2010b

Yamakawa et al., 2010
Shukolyukov and Lugmair, 2006b
Trinquier et al.,2007

Qinetal., 2010a

Trinquier et al.,2007

Larsen et al., 2011

Trinquier et al.,2007
Bogdanovski and Lugmair, 2004
Gopel and Birck, 2010

Larsen et al., 2011

Gopel et al., 2009

Trinquier et al., 2007

Qinetal., 2010a

Trinquier et al., 2007

Qinetal., 2010a

Qinetal., 2010a

Larsen et al., 2011

Trinquier et al., 2007

Qinetal., 2010a

Trinquier et al., 2007

Qin et al., 2010b

Shukolyukov and Lugmair, 2006a
Trinquier et al., 2007

Qinetal., 2010a

Qinetal., 2010a

Shukolyukov and Lugmair, 2006a
Trinquier et al.,2007
Shukolyukov and Lugmair, 2006a
Yamashita et al.,2010

Trinquier et al.,2007

Qinetal., 2010a

Shukolyukov and Lugmair, 2006a
Yamashita et al., 2005

Petitat at al., 2011

Trinquier et al., 2007

Qinetal., 2010a

Trinquier et al.,2007

Qinetal., 2010a

Shukolyukov and Lugmair, 2006a
Petitat at al., 2011

Larsen et al., 2011
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Fig.2 A schematic figure on the evolution of ¢*Cr in the solar nebula. *Cr-rich grains
are injected at a distance R; and spread in the nebula by diffusion and advec-
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Four examples of ¢*Cr evolution (shown as mixing fraction profilesat 0.5, 1.0, 2.0
and 4.0 Ma after injection) for various injection radii and a constantviscosity pa-
rameter « . The *Cr mixing fraction at the time of injection is 10™*. The asteroidal
belt is located at 2~4 AU where mixing fractionsare nearly constant with respect
to position. The best fit to the meteoritic data is obtained for the injection radius of

100 AU.
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