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Mid-ocean ridges are places where interactions between seawater and oceanic crust take
place. Hydrothermal interactions govern the chemistry of the oceans while hydrothermal vent
fields host unique and diverse biological communities even in barren ocean floor settings, and
are candidates for the birthplace of the earliest life forms. This paper presents the important
roles of the hydrothermal carbonatization of Archean oceanic crust that is one of the character-
istic seafloor alterations in the early Earth. Based on the mineralogical, geochemical, and geo-
logical features of calcite in the Archean greenstones, the CO: flux from ocean to oceanic crust
was estimated to be two orders of magnitude larger than the modern value, which points to the
significance of seafloor hydrothermal carbonatization in the Archean carbon cycle. Further-
more, thermodynamic calculations of phase equilibria in the high-temperature alteration zone
indicate that the hydrothermal fluid was alkaline due to the presence of calcite in the alteration
minerals under a high-CO; condition, and predict a generation of SiO.-rich and Fe-poor hydro-
thermal fluids in the subseafloor hydrothermal system. Such high-temperature alkaline fluids
could have had a significant role not only in the early ocean geochemical processes but also in
the early evolution of life.

Key words: Early Earth, Hydrothermal alteration, Carbonatization, Archean oceanic Crust,
Alkaline hydrothermal fluid, Microbial ecosystem
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AWBAEDNED - 7-Dh, # RED 2 ULENDH - 72
(B 21, Sleep and Zahnle, 2001) , % Z THEH L,
ZN &) L EOREROMEERZR A D35 FH & [
BRI L VIR ER 2 20 Tw 20089 &l
LML L) EWgEE X ¥ — F &7 (Shibuya et
al., 2007a), AR TIE, WHA—ZAFFVT, ELNT
AE T G AR T IS I LT 2 KA ] (32~30
AR DI & B AT S WD O MR~ D
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22 WEESLETEXRS

E NI IEmER B AR A — 2 5 ) 7 AL
WZAiE T A HERUCR & RAFIRIE O R v K o H B
D—DTHb, ZOYNMNTEakkt amEiHitx
RE L NI HEREP SR> TEBY, BHARED
TV—=bT7 7 b= A LRABRARII DR SN L
# 2 LN TWw5% (Van Kranendonk et al., 2007) . A
WFE #u3gk T & % Cleaverville #uig i3 ¥ LN T A
fRta G o 4 ¥ FERRICAE L, 32~30[4F
R OGS L e ZNE ) WA HRIN L Twb
(Fig. 1; Ohta et al, 1996). HEFEFIXEIRF ¥ —
b, MIREELRE, RE, WE, BELkErbkoTH
D (Cleaverville % &), F1id kg /E4km DL LiZb
oo THIREBE, ¥— MRESE, "MTeIFA54
MR EDODEIREDPOLHER I N TS (Regal RE)
(Shibuya et al., 2007a) , Z O HIFILERIZIE T 2 —F
Ly 7 AE L7 L — NEBESHRAINTEY
(Ohta et al., 1996; Kato et al., 1998), ZilEklkix
BIED P LA I CT v 5 (Ohta et al., 1996;
Sun and Hickman, 1999). Z® Z & 2> 5 A il i3 i
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RS D HIL A AR NE BB L TE -2 & LR
MTHsb (Katoetal, 1998),
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Fig.1 Geological map of the Cleaverville area, Pilbara Craton, Western Australia, showing distribution
and volume concentration of calcite in greenstone (after Shibuya et al., 2012). The samples analyzed
for stable isotopes are indicated by heavy rims on plotted symbols. The southern part of the green-
stone sequence is tectonically in contact with sedimentary rock units of the Nickol River Formation

(Hickman, 2002).
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~e), RIROFGMRAEREDHFET LXMW TH 5
(Fig.2g and h)o TNHLOZLREICEALTWDEH
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BLTVE I D, TRE T LREOMEREKE Y
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Fig 2 Microphotographs of carbonatized greenstones from the Cleaverville area (after Shibuya et al.,
2012). (a) A typical altered basaltic greenstone. Igneous glass and minerals were replaced by sec-
ondary minerals, but intersertal texture is well preserved. (b) Typical highly carbonatized green-
stone from the stratigraphically upper part of the Cleaverville greenstone. Igneous plagioclase
has been replaced by aggregates of calcite, sericite, albite, and quartz; dark area consists mainly
of chlorite. (c) Moderately carbonatized greenstone. Calcite occurs together with quartz albite and
chlorite after pseudomorphs of igneous plagioclase and glass. (d) Less carbonatized sample from
the lower part of the greenstone. Clinopyroxene in the groundmass is well preserved, but igneous
plagioclase is completely altered to albite, quartz, chlorite, and/or calcite. (e) Carbonatized coarse-
grained greenstone. Igneous plagioclase has been replaced by calcite, albite, and quartz. Intersti-
tial glass or clinopyroxene has been completely decomposed to chlorite, quartz, and calcite. (f) Al-
tered coarse-grained greenstone preserving igneous clinopyroxene. (g) Vein-filling calcite and
quartz sharply cutting hydrothermally altered greenstone. (h) Calcite filling vesicles in
amygdaloidal basaltic greenstone. Mineral abbreviations: Cc = calcite, Pl-ps = plagioclase pseudo-
morph, Sc = sericite, Chl = chlorite, Qz = quartz, Cpx = clinopyroxene.
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HEPMRSEEHIHPLTnDEZEZRLTWS,
BAE DM T OIREL & S ICRIRIES & LTl
E I N7z CO.DREDWA L THY (Alt and Teagle,
1999), Z N Cleaverville ¥ 5 R 12 il K B K =
BIEALERAIREINTWwWAED D EEZOND, &5
12, LRE-H0-CO.D 5% T he MY 8L W 1% — M (2
DLEHEESICARLEIEHDT (Liou et al,
1987), RIS D — F OYERESA 1332~ 30 4F
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Fig. 3 Depth variation of the volume concentration
of calcite in the Cleaverville greenstones (af-
ter Shibuya et al., 2012). Black circle indi-
cates an average volume concentration per
500 m.
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Cleaverville % & & W 5 # 1 D6“C & 60 fii
(0%Ce £0%0. £ §5) FHEEEEIITELL TV 5,
0" Cee MHIE B IEDHFIETHI A 5 DIREAIETIZ L 257>
T, EofinbAnfi~EZbLTBY (Fig. 4a),
0%0 D T TR > TR LTS (Fig. 4
b)o T, BAEDOWHFEMHETD, °Celli & 6”0
EASTALIZ 2> TR LT A 2 L EFRAINTH 5
(Alt et al., 1986), L7:2%%5TC, Cleaverville X%
J& D §PCo fili & 60 i D 24 R O i JEIE BLK 2 AE ] D
BOBHZRFLTVWLEEZ OGNS,

24.1 FHBRADOBRFERMLELL EBHMKDEE T
F ORI 13— R\ AR & DT AR 2 IR E
LTHETTAHAIENTE D, HEDBEMZIIEWV
T, ZBESEM ORI XS L DY A KIS B E
FEIRLAAR I % FEo G fh & O % e L CHEE S hTw
% (Alt et al., 1986; Shanks et al., 1995), AHf3ET
FRERDOHEKDICOMBIEZBMENIDERLTH S
EARE L 720 Cleaverville X a W )7 A O BEEZ WAL
KIL139.15 516.8% (Fig.4b) TH %, Z DMK
HAZ 60 il 20% Dk & O P 2 K E T % £ 103~
209°C DIETH Y, 512, KT TEELAEDRK
I CTHARDME R FMARLAMER TIEB L Z 4% (<
150°C; Lawrence and Gieskes, 1981), iR Ti¥+3
%o FERE (>200°C; Alt et al., 1986; Shanks et al.,
1995) 8352 L2 FET 5 L RO DI
1379~270°C L RfE b 5N b, ZOEId REEEAL
EMZH T Y ZIF TR WRHEOZE WG b
25 RED 5N AIE (Shibuya et al., 2007a) £ 1
RRENWIRE L 2o TH Y, [ UHRETHREOHK
Wil CIRBYEALERA R E Tn 22 L 2R L TWw5,

— 5T, MPHEROHEKD SO HIZOVTIE, H
£ LU (Holmden and Muehlenbachs, 1993), %
72, BUEX D H1d 2 2148 (- 13%FEEE ;5 Jaffrés
et al., 2007) L\WVH2ODEFINPEENL TV
%o L L, AWFZETIRIZHEAK D S0 A — 18% T
HoHLTHE, TRTOHEAH60C LT TR
L, Nl EoiRECIERBRIEERAR X 2o 72
CEI B THITIEIMEAK - BLK COLR B S BUAE &
DD 572 EARETH Y, Z oMo FEm &
FIET 5. L72h > T, AWM RIIHHEDET V%
FTHRHLTWb,
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Fig. 4 Depth variation of stable (a) carbon and (b) oxygen isotope ratios of calcite in the Cleaver-
ville greenstones (after Shibuya et al., 2012).
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FEHGRTLE, KILERE B 67Ce. flH I3 IEK Ol % 7R
LTw5 (Alt et al., 1986), Cleaverville XA /E I
B OBCe il (~2.6%) 122V T b KR 0%
R E D 67Co fll (—0.67°5 +3.0%) (BT 7V 7,
29~ 30f&4EHi Pongola Supergroup, Nsuze Group;
Schidlowski et al., 1983; Veizer et al., 1990) (23T
W, Z 1 Cleaverville Z ik 5 g L5 @ J i 1 D
FFAEAKT D CO,THDH I LERL TS,

RIZ, 0PCfEDIEE T T T 7 4 N2 BFS 5720
IZ0PCAHIZDWTETY ¥ 7 %47 - 72, TARIZ3HE
¥ D6"Cronfli (—4.3%, —1.6%, +1.6%) % &
L7: (Fig.ba~c)o E5H1Z, {HET CTOWMAKD pHE
MLEZEELT, TNENDETFTNVIZB VT COug &
HCO; DREIIZOWTIDOD Y £ TOdiifha g L
72 (COsg X A ¥ DR, HCOs” X 4 ¥ DMK, Th
SOBEENRELWVIEK ., ZOEFT) VY IIEREZR
s iAol (RRE T RA D60 D & R
b OMNTEE LOVC i) ZHET 5 &, WHKD
0 CroofEAS— 1.6% TH B L E D HD L { i & —
B 52 Lhbiro: (Fig.5b) o S0 X I2, 60,
fEADHEE I NIZIMELZEET S L, Cleaverville &

REDOCe. lHIZH 5 —E D 6 Cscorll % FFOWARD 5
W L722Z2ZCTHIEFIC) TLFPTEL, 2h
iZ, Cleaverville ZAH D HFEADIZITTRTO R
FFIXMAKP O CO,THDH I L EREL TV,

2.5 KERFHICHT2EBBELSEBEHHREAD

CO,75vI A

Cleaverville ZR & A D R FIFEANTIT X
THRREFETH S EHE 2 5L, WE500m 50 ) #
HDE— FOVYEE RO OEE, 5TFE»S, H
MR L7 ) OWEBZRPFICEHES N TV S
CO.MH131.2x10mol/m* HAED b b, 251,
KR DI ORI BRAE DI RKAE (4.2X10°
m*yr; Reymer and Schubert, 1984) ®D3f5TH 52
Lx¥ET 5L (Ohta et al, 1996), 32~30fE4EHi
D DUEEED S W EHHEND CO7 T v 7 A1FL5X
10"mol/yr & RAED b b, ZDOMHEIZBIAEDL.5-2.4 %
10"”mol/yr (Alt and Teagle, 1999) X V) 2fi&E\, &
M35 AE§T O i bt ik EE500m 2 HHEE S h
72 FRRME (>3 % 10%mol/yr; Nakamura and Kato,
2004) & DB
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Fig. 5 Calculated temperature dependency of ¢ ’C.. when fluids have a constant §’Csco: value
(solid lines), projected on plots of the §°C.. value vs. the model temperature of calcite
formation in the Cleaverville greenstones (filled circles) (after Shibuya et al., 2012).
The assumed ¢ *Csco: value of the fluid is —4.3% in (a), — 1.6%0 in (b), and + 1.6%. in
(c), respectively. With each model, the three fluids with specific compositions (I:
COzwp)-dominant, II: mCO:w.y) =mHCO; , III: HCO; -dominant) generate different
temperature profiles for the 6 ®C.. value (solid lines), which indicates that §"°C.. values
change within the range between profiles I and III according to pH and temperature
conditions. The error of the model temperature indicates uncertainty derived from a +

2%o error of 60 of the model fluid.

e O RERIEAL L - e R 1L 7 L — MUK T
MR KEDOTIZLARLPLTHSE (B2, Sleep
and Zahnle, 2001; Nakamura and Kato, 2004), 3
TE D Pk AR Fx i O Mo A L C U H s b O e B YR 815
MEIRETHY, ZOEFIFTRTHET Y PAANEILA
AATW2 (Kerrick and Connolly, 2001), —77,
Kt ROk A AR OMIRARIZBE X ) Fnizo,
PRI O R TRIRSEM XL A A A THR L, CO.
fitkze Lo 2y V< PVICHBT 51T TH 5
(Santosh and Omori, 2008). L#2*L, Z® CO.ii
HRIEEBWONASAE LIS L, FHORBRIEIY %
T 5 EFHEN TS (Santosh and Omori,
2008) . ZAUTKERIZB VT OILARRIIPES =~
FVRRIC & D KGO CO5~ v b v~Eidh7z

ERFRL T 5o 35MRAEHT & 32~30f&4F 1l O ¥
RSN TN L RBIEIL SN TnEZ EE2E RS
& (Kitajima et al., 2001; Terabayashi et al., 2003;
Nakamura and Kato, 2004; Shibuya et al., 2007a),
WREEHR O LR BRIELIER A 72 < & & B4R
Wit FlHEns, 2OTJatAE7L—bF2 b
=7 AT o TUSK, WK COMREDN D IR
UTWETFA%EFTCREDCOE~Y Y PUANERBREL
Wz b Lite v,
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(Ohmoto, 1997; Holland, 1999; Knauth and Lowe,
2003) o KiifhF v — b & MRSk GLRE o B 3K &
BOKOALEFBICHEL T2 EEZ 5N TV AN
(Dymek and Klein, 1988; Hofmann and Harris,
2008), IFLALDEFNVIIKEROBKDBAED D
DEFRULBKICEG T Iy I AE—A—Tholz )
BT Y V.o Twb, LA L, KiTROMmAKREA
1 ZAXBUE & 130E ) BOKEBIERPEZ 2139 Th
D, oG, BUEE 3E ) RO BOKDFEAT % 0]
BEMED D B0 Z DFETIE, 35MAE T O B AKHLEL O 2
NFET) V7, TOBIKDBT ¥ — b RMIRERILE D
W T 0 A5 2 725, W ER O BOKCR A Y
HERBRIZOWTOEE (Shibuya et al., 2010) 12D\
THINT %o

3.2 3BEEMERENEREERDILEMEAEHE

BUE DR EAAKR T, ®min#ok (>300°C) O
L IRETO pH (pHins) R ERAL & TCIR R X 10
BRI TR + A + A QS A G DRI
LNy 77 ENTWD, BHBERBKOKERE
JEI B3 5 —) (Seyfried and Ding, 1995), #H&
AFDIKERBS AT D ) A A MG
13 2K D pHinsi & FI5FF TNy 7 7 LTV 3
(Seyfried et al., 1991)

BUAE D M et b U R R IR S AR D 28 U381
DHFIET BT TH LA (BlZIF, Alt, 1995), 35
EAEHT O IR XA GRS eis) o &ings
BRI RBRIR S AMFAE L T D (~350~400°C;
Kitajima et al., 2001; Terabayashi et al., 2003), &
512, KETHROMFRIREIIIMATIER ST,
I BEZ S QMFEDIEMRILIY THEE O i DMK A
7o ThbEEZHNS (Kump and Seyfried,
2005)c L72A%> T, 35ME4EHT O i i 22 E I o SRl
DR, WAEORNE TRADOHFIEIC X > TH
BTSN D, T, WA & REAITBAE L35
EROW S OFIRE IR CHRBDLEELENTH 5,

3.3 BMAO¥HE

AWZETIE, WA —AMF YT, ENNTHIE,
J = AR — )V MR FE 3 % RISHAEAR 1T O i PR % i
HERIREEBOSEWMA G DS (Fifa +#ERa+
FrEA +ARIEA + VT A A) & Z OFRLK
EHWTEN¥EETY) ¥ 7 %4T7- 7 (Terabayashi et
al., 2003; Shibuya et al., 2010) . KL #HEK R ELK
H D COL BEIZRIEANTEE TDH % 25, BUED min
KD COMEA~ 7= IHEIC & D —FF1Y120.2 mol/kg

o

123 L T3 (Von Damm and Lilley, 2004) i #7% O
i S B AL TR A SRR S LT v v (AL,
1995) Z & % 50.2 molkg LA ETH % & B HEE

L7ze L7225 T, DT ORMETIERE R o 2K
DL FEEE (COw +HCO,” +COZ7) ([ZCO0.)
A O F100K%, 0.2mol/kg & L7z, 3007 5400°
C, 5005EDEKMT, [ZC0.] & #KkD pH DRIFR,
pH @ SiO: i, SKREEICH T B EFH L7z, &
DFEE, BKD pHuw 1E [ZCO:] IKAFL, FEHIC
BWEIATNY 77 ShETFHEND (Fig 6).
Z O % pHuww 5 fF T 1E, & Si0:iE E (SiOsu +
HSiO;) ([ESi0.]) #0.06 mol/kg 2% ¥ T L H &
2 CGRIEEDEREKDFK3~445) (Fig. 7a). 7z,
BOKOEEEE (Fe* +FeOH' + FeCl™ + FeClowy)
([Feww]) WHAEDDID IV FE LKL 22 LTl
an5 (Fig. 7b)o

3.4 ¥MHEEFEPOEAE

IO+ X

BOIRE T v 7O, KU E L0
COLIZIEWICE AR BT 2K THKRTT IV
B RBANFEEL TV EEZRBLTY
%o COBKIE, PHHEECTRBBIEE L Twi
Fr—FOBETOERICEEL TV 2 Lk
Vo BT SIOCE L 7 VA ) kI, I
KT, 59MRED & R YEDHEARDOHRIZHE L 722133 T
HY, ENUHED BRI TO SR REKT
& pH KT IE ) A B R BK TV — A Z TR L
127259, DD, YUAORBIEIBEL KED
BEKDOIEWHATREZ 57213 ¥ Th b, L, )
W ER DO RN F v — P OIEK 71 RITKE L FY
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Fig. 6 A relation between [2CO.] and pH buffered by the mineral assem-
blage of plagioclase + epidote + calcite at 350°C (solid line) along
with 300°C and 400°C, 500 bar (broken lines) (after Shibuya et al.,
2010). In this system, pHi.w increases with increasing [XCO.]. The
[XCO:] in an Archean hydrothermal fluid is estimated to be at least
0.2 mol/kg (see text), representing a pH of>10. General modern
basalt-hosted hydrothermal fluids have [XCO;] up to 0.02 mol/kg
(e.g., Merlivat et al., 1987; Charlou et al., 2000) and pHi . around 5
(Seyfried et al., 1991; Ding et al., 2005). Note that the pH of modern
hydrothermal fluid is buffered by calcite-free mineral assemblage.
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Fig.7 (a) The effect of pH on [XSiO.] in a hydrothermal fluid at high tempera-
tures and 500 bar (after Shibuya et al., 2010). The [XSi0,] increases with
increasing pH at a constant temperature because the increasing pH ele-
vates the proportion of HSiO;". (b) The effect of pH on a Fe®* and total dis-
solved iron concentration ([Feww.]) in a potential Archean hydrothermal
fluid (after Shibuya et al., 2010). The [Feww] in the hydrothermal fluid is
mainly governed by the equilibrium with magnetite under a given H. con-
dition. Modern high-temperature hydrothermal fluids are plotted within
the range of chlorine-free and chlorine-bearing (0.55 mol/kg) systems un-
der pyrite-pyrrhotite-magnetite-buffered H. condition. The calculation for
an alkaline condition suggests that the Archean alkaline hydrothermal
fluid had quite low [Fea].
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Fig.8 Comparative illustrations for modern and Archean seafloor hydrothermal vent systems
(after Shibuya et al., 2010). (a) The hot hydrothermal fluid paths in the subseafloor and
at the seafloor (chimneys and mounds) are highly enriched with Fe and metal sulfides.
The hydrothermal plumes also contain Fe- and metal-sulfide particles but the particles
are oxidized by the oxic seawater during the deposition. Biogenic silica precipitation
dominates in the seafloor distal from the hydrothermal vents. (b) The hot, vigorous vent
fluids spread out from white siliceous chimneys and mounds and the subseafloor fluid
paths are cemented by silica veins and dikes. The emissions are not black smokers but
clear fluids at the vent orifices attributed to the scarcity of soluble iron and other metal
sulfides. Several meters away from the vents, the emissions become white and turbid
by precipitation of the oversaturated silica. With increasing distance from the vents, a
cloud of reddish brown particles of iron oxyhydroxides dominates hydrothermal plumes.
In the vicinity of the hydrothermal vent systems, the silica particles are predominant in
the hydrothermal sediments, but the iron oxyhydroxides are abundant with increasing
distance from the vent systems.
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